H(t)=-16t^2+40t+15

Simple and best practice solution for H(t)=-16t^2+40t+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+40t+15 equation:



(H)=-16H^2+40H+15
We move all terms to the left:
(H)-(-16H^2+40H+15)=0
We get rid of parentheses
16H^2-40H+H-15=0
We add all the numbers together, and all the variables
16H^2-39H-15=0
a = 16; b = -39; c = -15;
Δ = b2-4ac
Δ = -392-4·16·(-15)
Δ = 2481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-\sqrt{2481}}{2*16}=\frac{39-\sqrt{2481}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+\sqrt{2481}}{2*16}=\frac{39+\sqrt{2481}}{32} $

See similar equations:

| 2a-3=-5 | | 7x-3(x-8=1/2(8x+2) | | .4d+3.1=12.3 | | 8x-25=83 | | 0.04=25x | | (3x/10)+(4x/5)=11 | | –3s+8=4−2s | | 43=4.15/(.12-x) | | 27-3s=15 | | 8.33x=3.33x+40 | | -2x+3+5x=-9 | | -6-5(7b+5)=-171 | | -6x-6-2x=26 | | 0.25(x+4)–3=28 | | 12-6t=15 | | -2+2x+12=10 | | 0.48=0.8x | | y=8.25 | | 10+5x-6x=4 | | 4(4-9)=3(2y-8) | | 4n+13=-15 | | -4-7x+10=-43 | | -68=-7x+x-8 | | 9t-36=36 | | x+3x+8=32 | | 8.33x=3.12x+40 | | 600=20xG | | C=5.1+2.8m | | (n-2)180/n=360 | | -2|x+7|-5=15 | | 4x-2x+(15÷3)=3955 | | 0.04x+00.6(10,000)=120 |

Equations solver categories